Exercise 2.5.4

(Infinitely many solutions with the same initial condition) Show that the initial value problem $\dot{x}=x^{1 / 3}, x(0)=0$, has an infinite number of solutions. (Hint: Construct a solution that stays at $x=0$ until some arbitrary time t_{0}, after which it takes off.)

Solution

Notice that one solution to the initial value problem is $x(t)=0$ because

$$
\frac{d}{d t}(0)=(0)^{1 / 3}=0
$$

and $x(0)=0$. Another one can be obtained by separating variables and integrating both sides.

$$
\begin{gathered}
\frac{d x}{d t}=x^{1 / 3}, \quad x(0)=0 \\
x^{-1 / 3} d x=d t \\
\int x^{-1 / 3} d x=\int d t \\
\frac{3}{2} x^{2 / 3}=t+C
\end{gathered}
$$

Apply the initial condition $x(0)=0$ now to determine C.

$$
\frac{3}{2}(0)^{2 / 3}=0+C \quad \rightarrow \quad C=0
$$

Consequently, another solution is

$$
\begin{gathered}
\frac{3}{2} x^{2 / 3}=t \\
x^{2 / 3}=\frac{2}{3} t \\
x^{2}=\frac{8}{27} t^{3} \\
x(t)= \pm \sqrt{\frac{8}{27}} t^{3} .
\end{gathered}
$$

Consider a piecewise function defined by

$$
x(t)= \begin{cases}0 & \text { if } t<t_{0} \\ \sqrt{\frac{8}{27} t^{3}} & \text { if } t>t_{0}\end{cases}
$$

where $t_{0}>0$ so that the initial condition is satisfied. Even though it's undefined at $t=t_{0}$, this function satisfies the initial value problem. Therefore, since t_{0} is arbitrary, there are an infinite number of solutions.

